
Title of the Project: MiniTrails

I.​ Introduction:

We chose this project because the ability to manage thousands of trails around the world is

important to fostering a community around hiking. This application makes it easier for

experienced hikers to learn more about their next hike, and see if the hike fits with their own

ability. We chose this domain because of the wealth of community sourced data. It is

important for users to be able to access the information in a quick and user-friendly way, and

be able to contribute to the community of trail hiking data.

This application allows users to view user submitted data on hikes. This includes the location,

Length of the hike, and the elevation change required to complete the hike. Various statistics

on the trails such as ratings and difficulty allow the application to surface recommendations

to hikers to help them find their next hike based on what is best suited to them. This app

also allows users to create their own profiles and record their own hikes, both as a history of

their self-improvement, and to contribute to the community for the next user to find the

best next hike. Users can also join clubs to foster a social community around the sport of

hiking.

The report is organized into the steps required to carry out the development of a new

database focused application, from design of the database, to implementation and testing.

The general organization of roles and responsibilities were Kylie (Frontend developer) Josiah

(Backend developer) and Alex (Backend developer). Kylie created the frontend display to

enable users to query the backend database, Alex organized and cleaned the community

sourced data into our app database schema, and Josiah generated data to supplement the

community sourced data for ease of use.

II.​ Our Implementation

○​ Description of the system architecture

Our database uses Microsoft SQL and our website is written in Python with user

interface components built with React. The database consists of seven tables, five

primary tables storing data and two to facilitate many to many joins between the tables.

The application has SQL queries and stored procedures that are tied to interactions the

user can take on the website to trigger data pulls from the database and data loads into

it.

○​ Description of the dataset

Our data set came from https://www.kaggle.com/datasets/roccoli/gpx-hike-tracks/data

and is about hiking, contained 17 columns:

●​ Id - the dataset assigned identifier

●​ length_3d - the numeric distance in meters of the trail, including both vertical and

horizontal distance

●​ user - the user name of the user associated with the data row

●​ start_time - data and time that they began the hike

●​ max_elevation - max elevation the trail reaches, in meters

●​ bounds - coordinates of the edges of the trail

●​ uphill - the vertical distance travel upwards during the hike, in meters

●​ moving_time - number of seconds the hike took, calculated by finding the difference

between their start and end time

●​ end_time - data and time that they ended the hike

●​ max_speed - the maximum speed hit while hiking the trail, in kilometers per hour

●​ gpx - gpx encoded GPS data of the trail’s location

●​ difficulty - rated difficulty of the trail

●​ min_elevation - min elevation the trail reaches, in meters

●​ url - if this row’s data is scrapped from the internet, the url it came from

●​ downhill - the vertical distance travel downwards during the hike, in meters

●​ name - name of the hike

●​ length_2d - the numeric distance in meters of the trail, including only horizontal

distance

We wanted our app to be more than just a repository of hiking data so we generated

some additional data of hiking reviews and user demographics so we could simulate the

interactions that users would have with our site.

○​ ER diagram

https://www.kaggle.com/datasets/roccoli/gpx-hike-tracks/data

​

○​ Relational model:

■​ User(UserID,Name,Gender,Nationality,Age,Experience)

Keys: UserID is the primary key

■​ Review(ReviewID,Comments,Difficulty,Rating,UserID,TrailID)

Keys: ReviewID [primary key]

■​ HikingClub(ClubID,Name)

Keys: ClubID [primary key]

■​ Hike(HikeID,MaxSpeed,EndTime,StartTime,MovingTime,TrailID)

Keys: HikeID [primary key]

■​ Trail(TrailID,GeoBoundary,MinElevation,Downhill,Name,Length2D,Uphill,Length3D,Gpx)

Keys: TrailID [primary key]

■​ Member(UserID,ClubID)

Keys: (UserID,ClubID) [primary key]

■​ Hiker(UserID,HikeID)

Keys: (UserID,HikeID) [primary key]

○​ Implementation:

We built a website that a user would interact with that contains many graphs and tables

that query our database and has various data entry fields where they can enter data that

gets stored into the database.

We built 7 tables in the database to hold the data, below is the create table statement

for each their schemas:

●​ CREATE TABLE Users (

​ UserID BIGINT IDENTITY(1, 1) PRIMARY KEY

​ ,Name VARCHAR(255)

​ ,Gender VARCHAR(255)

​ ,Nationality VARCHAR(255)

​ ,Age INT

​ ,Experience VARCHAR(255));

●​ CREATE TABLE Trail (

​ TrailID BIGINT IDENTITY(1, 1) PRIMARY KEY

​ ,GeoBoundary VARCHAR(4000)

​ ,MinElevation FLOAT

​ ,Downhill FLOAT

​ ,Name VARCHAR(255)

​ ,Length2D FLOAT

​ ,Uphill FLOAT

​ ,Length3D FLOAT

​ ,gpx NVARCHAR(MAX));

●​ CREATE TABLE Review (

​ ReviewID BIGINT IDENTITY(1, 1) PRIMARY KEY

​ ,Comments VARCHAR(4000)

​ ,Difficulty VARCHAR(255)

​ ,Rating INT

​ ,UserID BIGINT

​ ,FOREIGN KEY (UserID) REFERENCES Users(UserID)

​ ,TrailID BIGINT

​ ,FOREIGN KEY (TrailID) REFERENCES Trail(TrailID));

●​ CREATE TABLE Hike (

​ HikeID BIGINT IDENTITY(1, 1) PRIMARY KEY

​ ,MaxSpeed FLOAT

​ ,EndTime DATETIME2

​ ,StartTime DATETIME2

​ ,MovingTime FLOAT

​ ,TrailID BIGINT

​ ,FOREIGN KEY (TrailID) REFERENCES Trail(TrailID));

●​ CREATE TABLE HikingClub (

​ ClubID BIGINT IDENTITY(1, 1) PRIMARY KEY

​ ,Name VARCHAR(255));

●​ CREATE TABLE Member (

​ UserID BIGINT

​ ,ClubID BIGINT

​ ,PRIMARY KEY (USERID, ClubID)

​ ,FOREIGN KEY (UserID) REFERENCES Users(UserID)

​ ,FOREIGN KEY (ClubID) REFERENCES HikingClub(ClubID));

●​ CREATE TABLE Hiker (

​ UserID BIGINT

​ ,HikeID BIGINT

​ ,PRIMARY KEY (UserID, HikeID)

​ ,FOREIGN KEY (UserID) REFERENCES Users(UserID)

​ ,FOREIGN KEY (HikeID) REFERENCES Hike(HikeID));

When you first open the website, you see our main page which prompts the user to

explore trails, meet other hikers, or view their profile to make changes to their account.

The first thing on the trails page there’s a world map which has pins for the location of

each hike in our database. Below that graph it lists all trails shown on the map. You can

filter what’s shown using the difficulty and name search filters. You can also choose the

listing order of trails to be by name, length, or difficulty.

Below that on the same page are a bunch of graphs and tables. The first is the top 5

recommended hikes for you which is determined by finding the highest rated hikes that

the current user has not already completed. Next is a graph of completed hikes per

month for the whole database.

CREATE PROC dbo.usp_GetRecommendations

 @UserID INT,

 @Top INT = 5,

 @MinReviews INT = 3

AS

BEGIN

 SET NOCOUNT ON;

 WITH RatingAgg AS (

 SELECT

 R.TrailID,

 AVG(CAST(R.Rating AS FLOAT)) AS avgRating,

 COUNT(*) AS numReviews

 FROM dbo.Review R

 GROUP BY R.TrailID

),

 Qualified AS (

 SELECT

 T.TrailID,

 T.Name,

 RA.avgRating,

 RA.numReviews

 FROM dbo.Trail T

 JOIN RatingAgg RA ON RA.TrailID = T.TrailID

 WHERE RA.numReviews >= @MinReviews

),

 Dedup AS (

 SELECT *,

 ROW_NUMBER() OVER (

 PARTITION BY LTRIM(RTRIM(LOWER(Name)))

 ORDER BY avgRating DESC, numReviews DESC, TrailID

) AS rn

 FROM Qualified

)

 SELECT TOP (@Top)

 TrailID AS trailId,

 Name AS name,

 CAST(ROUND(avgRating,2) AS DECIMAL(4,2)) AS avgRating

 FROM Dedup

 WHERE rn = 1

 ORDER BY avgRating DESC, name;

END

/* Monthly hike counts in the past 12 months (L2) */

SELECT FORMAT(HI.StartTime, 'yyyy-MM') AS YearMonth,

 COUNT(*) AS NumHikes

FROM dbo.Hike HI

WHERE HI.StartTime >= DATEADD(MONTH, -12, SYSUTCDATETIME())

GROUP BY FORMAT(HI.StartTime, 'yyyy-MM')

ORDER BY YearMonth;

GO

After that are three components for the top rated trails, most challenging, and most

reviewed trails.

/* Top Rated and Most-Reviewed Trails */

SELECT T.TrailID,

 T.Name,

 AVG(R.Rating) AS AvgRating,

 COUNT(*) AS NumReviews

FROM dbo.Trail AS T

JOIN dbo.Review AS R ON R.TrailID = T.TrailID

GROUP BY T.TrailID, T.Name

HAVING COUNT(*) >= 5

ORDER BY AvgRating DESC;

GO

/* Challenge Trails - Long (>10 mi) & highly‑rated (>4) trails*/

SELECT T.TrailID,

 T.Name,

 T.Length3D,

 AR.AvgRating

FROM (SELECT TrailID, AVG(Rating) AS AvgRating

 FROM dbo.Review

 GROUP BY TrailID) AS AR

JOIN dbo.Trail AS T ON T.TrailID = AR.TrailID

WHERE T.Length3D > 16093.44 -- 10 miles in metres

 AND AR.AvgRating > 4.0;

GO

Then is a component for the steepest trails which includes the trail name and its average

grade. Finally, there is a component that lists out the Top months of hikes with the

number of hikes that occurred during that month.

/* Steepest Trails */

SELECT TrailID,

 Name,

 ROUND(Uphill / NULLIF(Length3D,0), 3) AS GainPerMeter

FROM dbo.Trail

WHERE Length3D > 0

ORDER BY GainPerMeter DESC;

GO

​ /* Top Months */

​ SELECT FORMAT(HI.StartTime, 'yyyy-MM') AS YearMonth,

 COUNT(*) AS NumHikes

FROM dbo.Hike HI

WHERE HI.StartTime >= DATEADD(MONTH, -12, SYSUTCDATETIME())

GROUP BY FORMAT(HI.StartTime, 'yyyy-MM')

ORDER BY COUNT(*) DESC;

GO

On trails page you can click on any trail to open up the details for that specific trail. This

will show a map with the location of the trail along with information about it such as

length, uphill, downhill, min elevation, and average rating. You can also enter a review

which involves giving it a rating of 1-5, assigning it a difficulty of easy, medium, or hard,

and including free text comments. When the user submits the review it gets saved to the

database in the Reviews table.

​ /* dbo.GetTrailSummary: aggregated stats for a trail */

CREATE OR ALTER PROC dbo.GetTrailSummary

 @TrailID BIGINT

AS

BEGIN

 SET NOCOUNT ON;

 SELECT T.TrailID,

 T.Name,

 AVG(R.Rating) AS AvgRating,

 COUNT(R.ReviewID) AS NumReviews,

 COUNT(HI.HikeID) AS NumHikes,

 MIN(T.MinElevation) AS MinElevation,

 MAX(T.MinElevation+T.Uphill)AS MaxElevation

 FROM dbo.Trail T

 LEFT JOIN dbo.Review R ON R.TrailID = T.TrailID

 LEFT JOIN dbo.Hike HI ON HI.TrailID = T.TrailID

 WHERE T.TrailID = @TrailID

 GROUP BY T.TrailID, T.Name;

END;

GO

/* dbo.AddReview: insert or update a review */

CREATE OR ALTER PROC dbo.AddReview

 @UserID BIGINT,

 @TrailID BIGINT,

 @Rating INT,

 @Difficulty VARCHAR(255) = NULL,

 @Comments VARCHAR(4000) = NULL

AS

BEGIN

 SET NOCOUNT ON;

 MERGE dbo.Review AS T

 USING (SELECT @UserID AS UserID, @TrailID AS TrailID) AS S

 ON T.UserID = S.UserID AND T.TrailID = S.TrailID

 WHEN MATCHED THEN

 UPDATE SET Rating = @Rating,

 Difficulty = @Difficulty,

 Comments = @Comments

 WHEN NOT MATCHED THEN

 INSERT (Comments, Difficulty, Rating, UserID, TrailID)

 VALUES (@Comments, @Difficulty, @Rating, @UserID, @TrailID);

END;

GO

The explore page shows off stats related to hiking clubs that are in our database. It lists

all the clubs with the ability to search for clubs by name and for hikers by name to find

the clubs that they are a part of.

Below that are two tables: the club leaderboard which shows which club has logged the

most hiking miles and largest hiking clubs which shows which clubs have the most

members.

/* dbo.TopClubsByActivity: top clubs by hikes in a date range */

CREATE OR ALTER PROC dbo.TopClubsByActivity

 @StartDate DATETIME2,

 @EndDate DATETIME2

AS

BEGIN

 SET NOCOUNT ON;

 SELECT TOP 10

 HC.ClubID,

 HC.Name,

 COUNT(DISTINCT HI.HikeID) AS TotalHikes

 FROM dbo.HikingClub HC

 JOIN dbo.Member M ON M.ClubID = HC.ClubID

 JOIN dbo.Hiker H ON H.UserID = M.UserID

 JOIN dbo.Hike HI ON HI.HikeID = H.HikeID

 WHERE HI.StartTime BETWEEN @StartDate AND @EndDate

 GROUP BY HC.ClubID, HC.Name

 ORDER BY TotalHikes DESC;

END;

GO

/* Club membership counts (L2) */

SELECT C.ClubID,

 C.Name,

 COUNT(*) AS NumMembers

FROM dbo.HikingClub C

JOIN dbo.Member M ON M.ClubID = C.ClubID

GROUP BY C.ClubID, C.Name

ORDER BY NumMembers DESC;

GO

Next is a table called buddy stats which shows the hiking pairs that have hiked the most

miles together, which queries the database looking for hikes with multiple hikers

attached.

/* Buddy Stats - Pairs of users who hiked together */

SELECT U1.Name AS HikerA,

 U2.Name AS HikerB,

 COUNT(*) AS SharedHikes

FROM dbo.Hiker H1

JOIN dbo.Hiker H2

 ON H1.HikeID = H2.HikeID

 AND H1.UserID < H2.UserID

JOIN dbo.Users U1 ON U1.UserID = H1.UserID

JOIN dbo.Users U2 ON U2.UserID = H2.UserID

JOIN dbo.Hike HI ON HI.HikeID = H1.HikeID

WHERE DATEDIFF(MINUTE, HI.StartTime, HI.EndTime) > 0

GROUP BY U1.Name, U2.Name

ORDER BY COUNT(*) DESC;

GO

Lastly, there are components for the most active hikers and reviews which show the

hikers with the most kilometers logged and most reviews submitted respectively.

/* Most‑active hikers and their total 3‑D distance */

SELECT U.UserID,

 U.Name,

 SUM(T.Length3D) AS TotalDistance_m

FROM dbo.Hiker H

JOIN dbo.Users U ON U.UserID = H.UserID

JOIN dbo.Hike HI ON HI.HikeID = H.HikeID

JOIN dbo.Trail T ON T.TrailID = HI.TrailID

GROUP BY U.UserID, U.Name

HAVING SUM(T.Length3D) > 50000 -- >50 km

ORDER BY TotalDistance_m DESC;

GO

/* Top Reviewers */

SELECT U.UserID,

 MAX(U.Name) AS Name,

 COUNT(*) AS ReviewCount

FROM dbo.Users U

INNER JOIN dbo.Review R ON R.UserID = U.UserID

GROUP BY U.UserID

ORDER BY COUNT(*) DESC;

GO

The last page is a profile page where users can create or update their user account. It has

fields for their name, age, gender, nationality, experience level, and photo. This all gets

saved into the database into our Users table which is used in queries to return

information specific to the user and larger demographic based queries like what’s on the

Explore page.

CREATE PROCEDURE dbo.CreateUserAccount

 @Name NVARCHAR(255),

 @Email NVARCHAR(255),

 @Password NVARCHAR(255) -- assume this is hashed already

AS

BEGIN

 SET NOCOUNT ON;

 -- 1. Check for duplicate email

 IF EXISTS (SELECT 1 FROM dbo.Users WHERE Email = @Email)

 BEGIN

 RAISERROR('Email already in use.', 16, 1);

 RETURN;

 END

 -- 2. Insert the user

 INSERT INTO dbo.Users (Name, Email, Password)

 VALUES (@Name, @Email, @Password);

END;

CREATE PROCEDURE UpdateUserProfile

 @UserID INT,

 @PhotoURL VARCHAR(1000),

 @Name NVARCHAR(100),

 @ExperienceLevel NVARCHAR(50),

 @Gender NVARCHAR(20),

 @Nationality NVARCHAR(50),

 @Age INT

AS

BEGIN

 UPDATE Users

 SET

 PhotoURL = @PhotoURL,

 Name = @Name,

 Gender = @Gender,

 Nationality = @Nationality,

 Age = @Age

 WHERE UserID = @UserID;

END;

○​ Evaluation/Testing PDF
○​ MiniTrails Demo.mp4

III.​ Conclusion

​

We learned how to work collaboratively to create a web app using Microsoft SQL, React, and

Node JS. Points we found interesting were how we can create aspects that are interactive and

engaging with users(such as storing data like profile photos and having community-building

leaderboards) as well as having site sections update in real time using SQL. It was interesting to

learn how to write code in a non-SQL language that called SQL code to interact with the

database.

We each found different parts of development more or less interesting. For example, Kylie found

the process and logic behind queries to be less invigorating than the outcome on the frontend.

On the other hand, Alex and Josiah found that aspect to be more mentally stimulating. Most

importantly, we collectively learned how to work as a team which is a valuable skill in

development.

https://drive.google.com/file/d/1QtnoBVJWhg1OvWgeI0IwXEk9DKExzd9G/view?usp=sharing
https://docs.google.com/document/d/1ktMqZO2CgJj-WVutnrU8l5PYwT5XjLMMuXvyJoirkD0/edit?usp=sharing

IV.​ References

We learned how to use the following tools in developing MiniTrails:

●​ Tanstack Query

●​ Using Vite

●​ Using SSMS

●​ Using Tailwind

They each offered flexibility either in connecting to the DB or to interface styling.

https://tanstack.com/query/latest
https://vite.dev/guide/
https://learn.microsoft.com/en-us/ssms/quickstarts/ssms-connect-query-sql-server?tabs=modern
https://tailwindcss.com/

